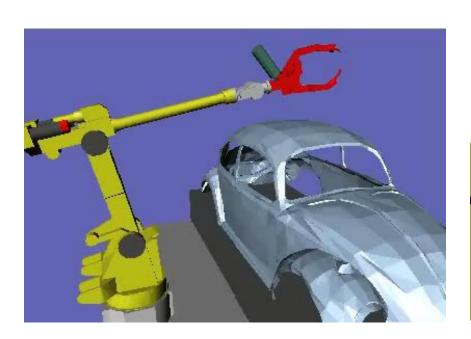


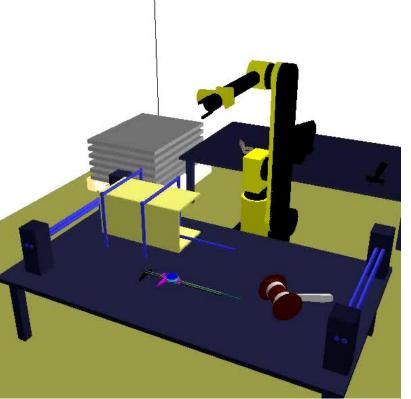
Robotik I: Einführung in die Robotik Bewegungsplanung

Tamim Asfour, Rüdiger Dillmann

KIT-Fakultät für Informatik, Institut für Anthropomatik und Robotik (IAR) Hochperformante Humanoide Technologien (H²T)

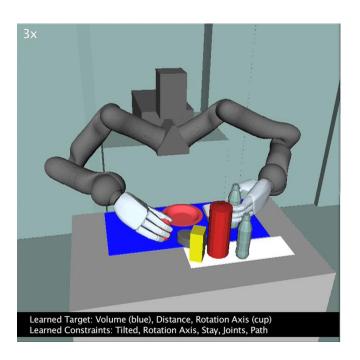
Inhalt


- Motivation
- Grundlagen der Bewegungsplanung
- Pfadplanung für mobile Roboter
- Bewegungsplanung für Manipulatoren



Bewegungsplanung: Motivation

Erzeugen einer kollisionsfreien Trajektorie unter Berücksichtigung verschiedener Ziele und Einschränkungen



Bewegungsplanung: Motivation

Erzeugen einer kollisionsfreien Trajektorie unter Berücksichtigung verschiedener Ziele und Einschränkungen

Inhalt

- Motivation
- Grundlagen der Bewegungsplanung
 - Problemstellung
 - Definitionen
 - Begriffsbildung
 - Problemklassen
- Pfadplanung für mobile Roboter
- Bewegungsplanung für Manipulatoren

Grundlagen der Bewegungsplanung: Problemstellung

- Gegeben
 - Konfigurationsraum C
 - Startkonfiguration $q_{start} \in C$
 - lacksquare Zielkonfiguration $oldsymbol{q}_{ziel} \in \mathcal{C}$
- Gesucht
 - Stetige Trajektorie $\tau: [0,1] \to C$ mit
 - $au(0) = q_{start}$
 - $\tau(1) = q_{ziel}$
 - Unter Berücksichtigung von
 - Gütekriterien
 - Neben- und Randbedingungen
 - Zwangsbedingungen

Grundlagen der Bewegungsplanung: Definitionen I

Konfiguration

Eine Konfiguration $q \in C$ beschreibt den Zustand eines Roboters

- als Lage und Orientierung im euklidischen Raum oder
- als Gelenkwinkelvektor im Gelenkwinkelraum.

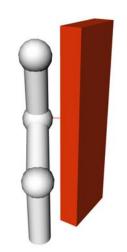
Konfigurationsraum

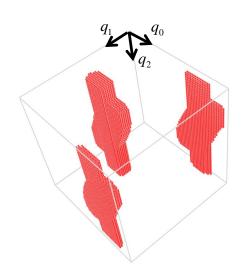
Der Konfigurationsraum \mathcal{C} eines Roboters R ist der Raum aller möglicher Konfigurationen von R.

Grundlagen der Bewegungsplanung: Definitionen II

Arbeitsraumhindernis

Ein **Arbeitsraumhindernis** *H* ist der Raum, welcher von einem Objekt im Arbeitsraum eingenommen wird.


Konfigurationsraumhindernis


Ein Konfigurationsraumhindernis C_H ist die Menge aller Punkte des Konfigurationsraumes C, welche zu einer Kollision mit dem Hindernis H führen.

Hindernisraum

Der **Hindernisraum** C_{obs} ist die Menge aller Konfigurationsraumhindernisse

$$C_{obs} = \bigcup_{i} C_{H_i}$$

Grundlagen der Bewegungsplanung: Definitionen III

Freiraum

Der **Freiraum** ist die Menge aller Punkte aus C, welche nicht im Hindernisraum C_{obs} liegen

$$C_{free} = \{ \boldsymbol{q} \in C \mid \boldsymbol{q} \notin C_{obs} \} = C \setminus C_{obs}$$

- Aufwand für die Berechnung des Freiraums: $O(m^n)$
 - n: Anzahl der Bewegungsfreiheitsgrade des Roboters
 - m: Anzahl der Hindernisse
- Für komplexere Kinematiken kann $\mathcal{C}_{\mathsf{free}}$ nicht effizient berechnet werden
- Verwendung approximativer Verfahren zur vereinfachten Repräsentation von \mathcal{C}_{free}

Grundlagen der Bewegungsplanung: Definitionen IV

Umweltmodellierung

- **Exakt**: Beispielsweise über CSG (constructed-solid-geometry), in Form einer algebraischen Beschreibung
- Approximiert: Die Umwelt wird durch N\u00e4herungen beschrieben (Kuben, verallgemeinerte Zylinder, Polyeder,....)

Planungsverfahren

Vollständig

- Liefert immer eine korrekte Lösung
- Kann ermitteln, ob keine Lösung existiert

Probabilistisch vollständig

- Falls eine Lösung existiert geht die Wahrscheinlichkeit, dass eine Lösung gefunden wird, bei fortschreitender Zeit gegen 1
- Existiert keine Lösung, terminiert das Verfahren nicht

Grundlagen der Bewegungsplanung: Begriffsbildung I

Pfadplanung

- Starres Objekt (z.B. mobiler Roboter, autonomes Fahrzeug)
- 2D Problem (Position: x,y)
- **3** 3D Problem (Position: x,y; Rotation: α)
 - → Piano Mover's Problem

Bewegungsplanung

- Mehrkörpersystem (z.B. Roboterarme, Systeme mit mehreren Robotern)
- Hochdimensionale Problemstellungen

Randbedingungen, auch Zwangsbedingungen

- Globale Randbedingungen: Limitieren den gültigen Konfiguratuionsraum z.B. aufrechte Position des Endeffektors, maximale Motorströme, etc.
- Lokale Randbedingungen: Schränken die Übergänge zwischen Konfigurationen ein z.B. Nicht-holonome Fahrzeuge, max. Geschwindigkeit/Beschleunigung

Grundlagen der Bewegungsplanung: Begriffsbildung II

Komplexität

Allgemeine Planungsaufgaben sind PSPACE-vollständig (engl. PSPACE-complete).

- Können von deterministischen Turingmaschinen mit polynomiellem Platz (Speicherplatz) entschieden werden
- Untere und obere Schranke der Komplexität NP ⊆ PSCAPE ⊆ EXPTIME
 - zumindest NP-hart ("schweres Problem")
 - Alle Probleme können in exponentieller Zeit gelöst werden

Grundlagen der Bewegungsplanung: Begriffsbildung III

Vollständiger Algorithmus

Ein vollständiger Algorithmus findet für spezielle Planungsprobleme mindestens eine Lösung oder erkennt in endlicher Zeit, dass keine Lösung existiert.

Randomisierter Algorithmus

Randomisierte Algorithmen verwenden Zufallsgrößen, um den Ablauf zu steuern, wobei oft heuristische Annahmen genutzt werden, um die Berechnung zu beschleunigen.

Auflösungsvollständiger Algorithmus

Ist ein approximativer Algorithmus für eine diskretisierte Problemstellung vollständig, gehört er zur Klasse der auflösungsvollständigen (engl. resolution complete) Algorithmen

Grundlagen der Bewegungsplanung: Begriffsbildung IV

Probabilistisch-vollständiger Algorithmus

Ein probabilistisch-vollständiger (engl. probabilistically complete) Algorithmus findet mindestens eine Lösung falls sie existiert. D.h. die Wahrscheinlichkeit, dass eine Lösung gefunden wird, konvergiert mit fortlaufender Zeit gegen eins.

Allerdings kann mit probabilistisch-vollständigen Algorithmen nicht ermittelt werden, ob keine Lösung existiert.

Grundlagen der Bewegungsplanung: Problemklassen I

Klasse a)

Bekannt: vollständiges Umweltmodell,

vollständige Neben-, Rand- und Zwangsbedingungen

Gesucht: Kollisionsfreie Trajektorie vom Start- zum Zielzustand

Klasse b)

Bekannt: unvollständiges Umweltmodell,

unvollständige Neben-, Rand- und Zwangsbedingungen

Gesucht: Kollisionsfreie Trajektorie vom Start- zum Zielzustand

Problem: Kollision mit unbekannten Objekten

Grundlagen der Bewegungsplanung: Problemklassen II

Klasse c)

Bekannt: zeitvariantes Umweltmodell (bewegliche Hindernisse)

Gesucht: Kollisionsfreie Trajektorie vom Start- zum Zielzustand

Problem: Hindernisse in Ort und Zeit variant

Klasse d)

Bekannt: kein Umweltmodell

Gesucht: Kollisionsfreie Trajektorie vom Start- zum Zielzustand

Problem: Kartographieren

Klasse e)

Bekannt: zeitvariantes Umweltmodell

Gesucht: Trajektorie zu einem beweglichen Ziel (Rendezvous-Problem)

Problem: Zielzustand in Ort und Zeit beweglich

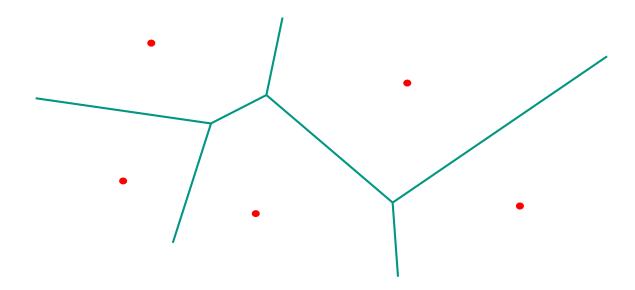
Inhalt

- Motivation
- Grundlagen der Bewegungsplanung
- Pfadplanung für mobile Roboter
 - Voronoi-Diagramme
 - Sichtgraphen
 - Zellzerlegung
 - Potentialfelder
 - A*
- Bewegungsplanung für Manipulatoren

Pfadplanung für mobile Roboter: Teilaufgaben

- Gegeben
 - 2D Weltmodell (z.B. Straßenkarte)
 - lacksquare Start- und Zielpositionen $oldsymbol{q}_{start}$ und $oldsymbol{q}_{ziel}$
- lacktriangle Gesucht: Günstigste Verbindung von $oldsymbol{q}_{start}$ nach $oldsymbol{q}_{ziel}$
- Ansatz:
 - Nonstruiere ein Netz W von Wegen in C_{free}
 - lacksquare Bilde $oldsymbol{q}_{start}$ und $oldsymbol{q}_{ziel}$ auf die nächsten Knoten $oldsymbol{q'}_{start}$ und $oldsymbol{q'}_{ziel}$ in W ab
 - Suche in W einen Weg von q'_{start} nach q'_{ziel}
 - lacksquare Finde einen Weg zwischen $oldsymbol{q}_{start}$ und $oldsymbol{q'}_{start}$, sowie zwischen $oldsymbol{q'}_{ziel}$ und $oldsymbol{q}_{ziel}$

Pfadplanung für mobile Roboter: Teilaufgaben


- lacktriangle Konstruktion des Wegenetzes W
 - Retraktionsverfahren, z.B. Voronoi-Diagramm
 - Sichtgraphen
 - Zellzerlegung
- Suche in W
 - Euklidischer Abstand
 - Potentialfelder
 - Baumsuche
 - A*

Voronoi-Diagramme

- Visualisiert die Zerlegung eines Raumes in Regionen basierend auf vorgegebenen Punkten.
- Eine Region ist definiert als die Menge aller Punkte, deren Abstand zum Zentrum geringer ist als zu allen anderen Zentren.
- Alle Punkte auf der Grenze zwischen zwei Regionen besitzen den gleichen Abstand zum eigenen und zum benachbarten Zentrum.

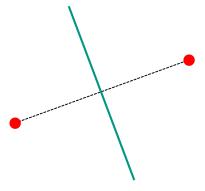
Voronoi-Diagramm: Konstruktion I

Gegebene Punktmenge P

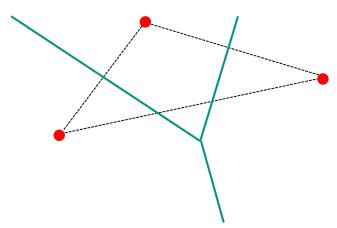
Voronoi-Diagramm: Konstruktion II

■ Teile P in zwei etwa gleich große Teilmengen P1 und P2

P1


P2

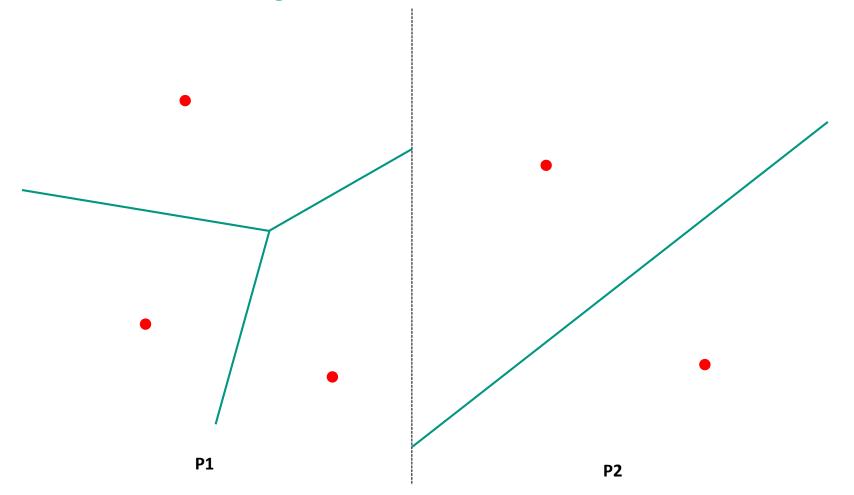
Voronoi-Diagramm: Konstruktion III


Durch rekursive Unterteilung der Punktmengen kann das Problem der Erstellung eines Voronoi-Diagramms auf zwei einfache Fälle reduziert werden.

Fall 1: 2 Punkte

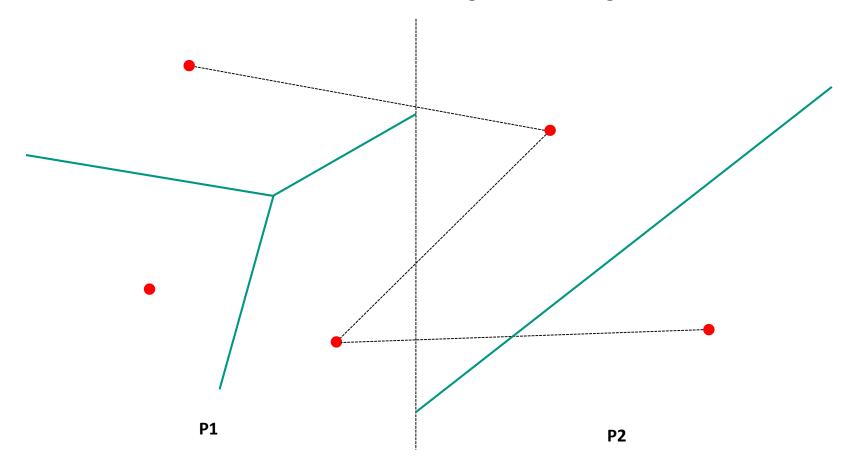
Die **Mittelsenkrechte** bildet das Voronoi-Diagramm

Fall 2: 3 Punkte


Die Mittelsenkrechten aller Punktpaare werden am gemeinsamen Schnittpunkt abgeschnitten

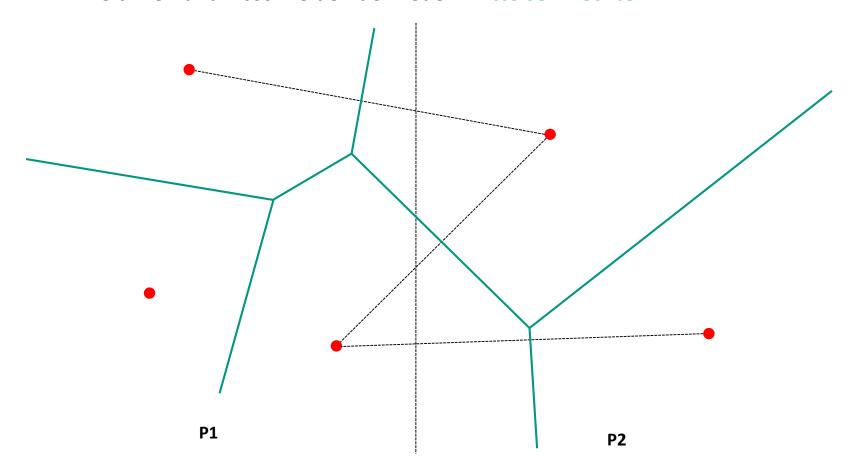
Voronoi-Diagramm: Konstruktion IV

■ Konstruiere **Voronoi-Diagramme** für **P1 und P2**



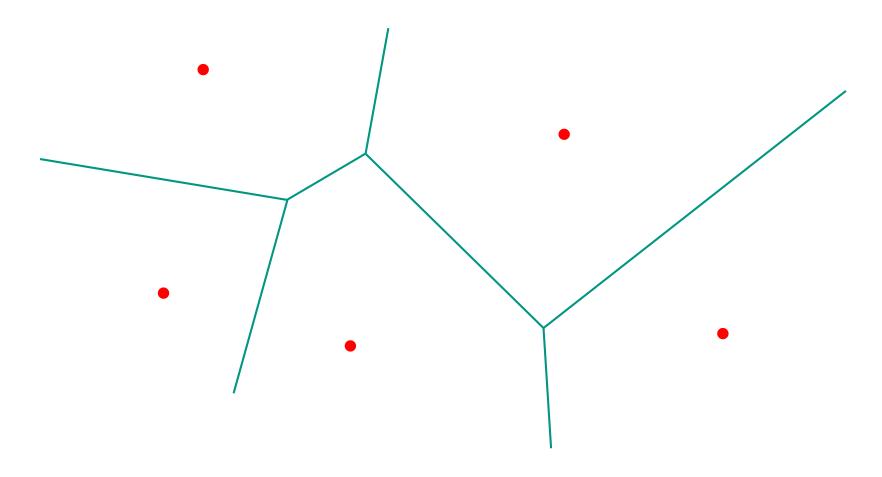
Voronoi-Diagramm: Konstruktion V

- Verschmelze die Voronoi-Diagramme für P1 und P2
 - Verbinden der nächsten Nachbarn entlang der Trennungslinie

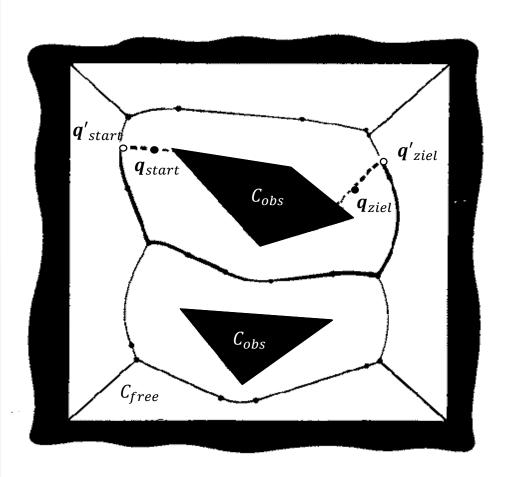


Voronoi-Diagramm: Konstruktion VI

- Verschmelze die Voronoi-Diagramme für P1 und P2
 - Einzeichnen und Abschneiden der neuen Mittelsenkrechten



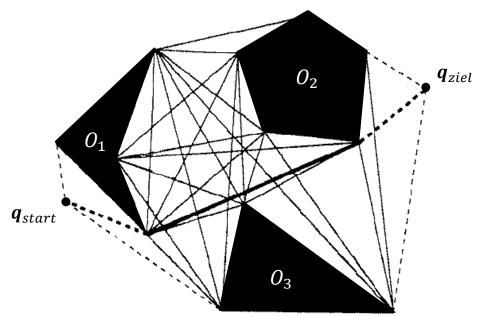
Voronoi-Diagramm: Konstruktion VII


Fertiges Voronoi-Diagramm für P

Voronoi-Diagramme: Vor- und Nachteile

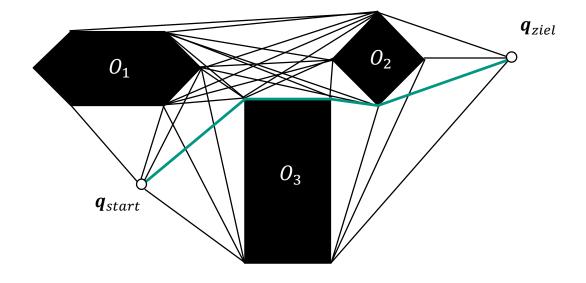
Vorteile:

- Maximaler Abstand zu Hindernissen
- Ein Roboter kann mit Hilfe von Abstandssensoren leicht prüfen ob der richtige Weg abgefahren wird
- Nachteile
 - In der Regel ist der Weg nicht der kürzeste.
 - Bei wenigen Hindernissen werden nur wenige Wege generiert.

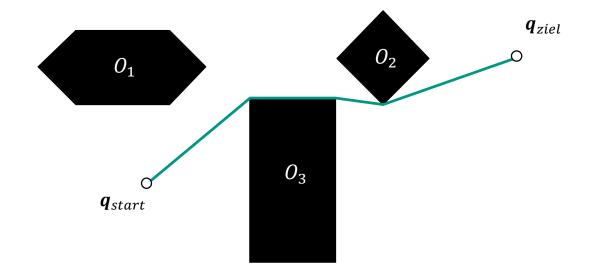


Sichtgraphen: Konstruktion

■ Verbinde jedes Paar von Eckpunkten auf dem Rand von $\mathcal{C}_{\text{free}}$ durch ein gerades Liniensegment, wenn das Segment kein Hindernis schneidet


lacksquare Verbinde $oldsymbol{q}_{start}$ und $oldsymbol{q}_{ziel}$ analog

Sichtgraphen: Beispiel I



Sichtgraphen: Beispiel II

Sichtgraphen: Vor- und Nachteile

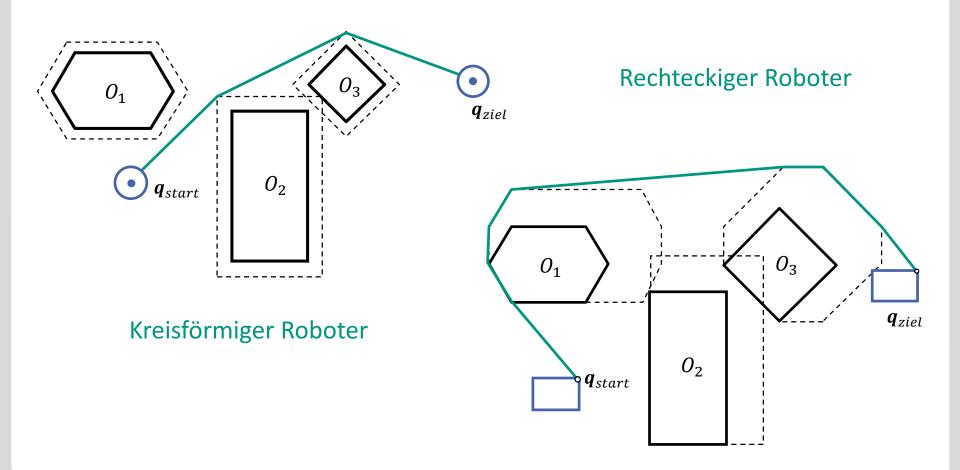
Vorteile:

- Wenn ein Weg gefunden ist, ist es auch der kürzeste Weg.
- Methode ist exakt, wenn nur zwei translatorische Freiheitsgrade existieren und sowohl Roboter als auch Hindernisse durch konvexe Polygone dargestellt werden können.

Nachteile:

Wege sind nicht zwingend kollisionsfrei, da Hinderniskanten auch Wegsegmente sein können.

Abhilfe durch **Erweiterung der Hindernisse**.


Methode auch im \mathbb{R}^3 anwendbar, jedoch sind die gefundenen Wege i. A. keine kürzesten Wege mehr.

Sichtgraphen: Erweiterung der Hindernisse

Hindernisse werden um Roboterform erweitert

Zellzerlegung

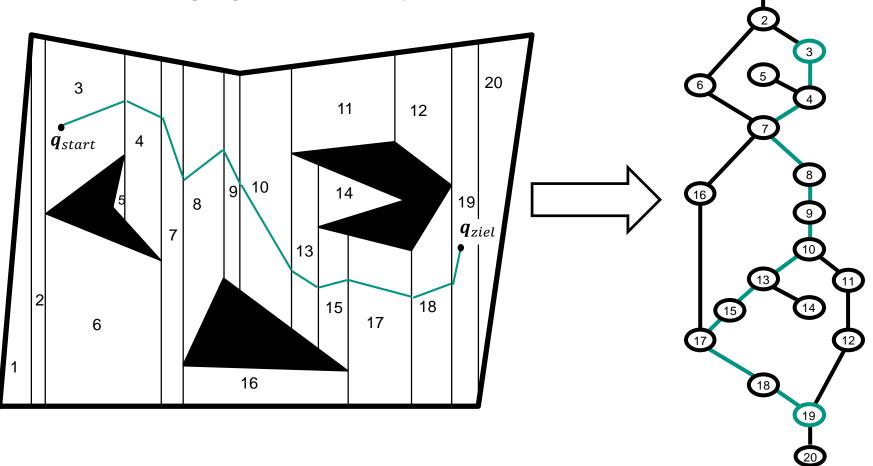
- Vorgehen:
 - 1. Zerlege C_{free} in Zellen, so dass ein Weg zwischen zwei Konfigurationen innerhalb einer Zelle leicht zu finden ist
 - 2. Stelle die Nachbarschaft (Adjazenz) in einem Graphen dar
 - 3. Suche den optimalen Weg von $oldsymbol{q}_{start}$ nach $oldsymbol{q}_{ziel}$ in dem Graphen
- Es gibt zwei Zerlegungsarten:
 - Exakte Zerlegung
 - Approximative Zerlegung

Exakte Zellzerlegung

- lacktriangle Zerlegung des Freiraumes C_{free} in Zellen Z_i , so dass:
 - Die Zellen sich nicht überlappen

$$\forall i, k, i \neq k: Z_i \cap Z_k = \emptyset$$

lacktriangle Die Vereinigungsmenge aller Z_i ist C_{free}


$$\bigcup_{i=1}^{n} Z_i = C_{free}$$

Exakte Zellzerlegung: Beispiel

Exakte Zellzerlegung mit Line-Sweep

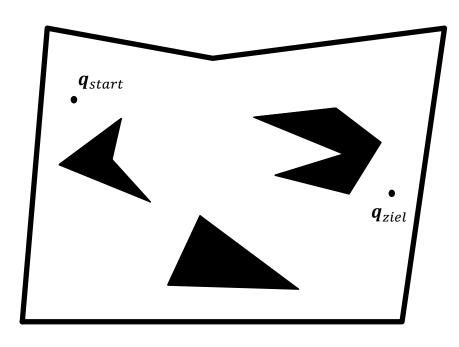
Approximative Zellzerlegung

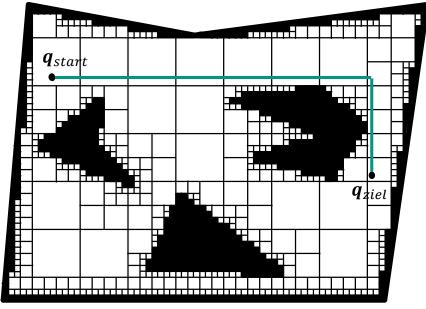
Vorgehen:

- 1. Zerlege den Freiraum C_{free} in Zellen von vordefinierter Form (z.B. rechteckig)
- 2. Wenn eine Zelle nicht vollständig in C_{free} liegt, verringere die Größe und zerlege die Zelle weiter (z.B. Quadtree)
- 3. Wende diesen Schritt bis zu einer Minimalgröße der Zellen an

Vorteil

Einfache Zerlegung und damit einfachere Wegsuche

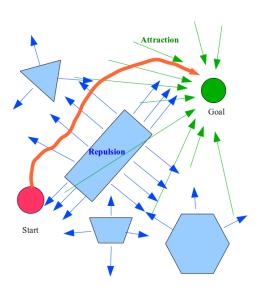

Nachteil

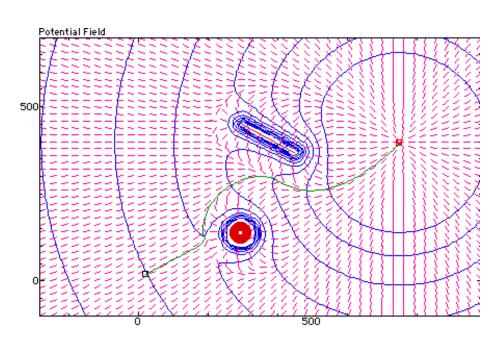

Der Freiraum kann i.A. nur annähernd beschrieben werden

Approximative Zellzerlegung: Beispiel

Bewegungsplanung für mobile Roboter: Teilaufgaben

- Konstruktion des Wegenetzes W
 - Retraktionsverfahren, z.B. Voronoi-Diagramm
 - Sichtgraphen
 - Zellzerlegung
- Suche in W
 - Euklidischer Abstand
 - Potentialfelder
 - Baumsuche
 - A*




Potentialfield Methode

Methode entwicklet für

- Bewegungsplanung [Kathib 1986]
- SLAM bei mobilen Roboter, d.h. [Prestes 2002]

O. Khatib, "Real-Time Obstacle Avoidance for Manipulators and Mobile Robots", International Journal on Robotics Research (IJRR), 5(1):90--98, Spring, 1986

Potentialfelder I

- Der Roboter bewegt sich unter dem Einfluss von Kräften, welche ein Potentialfeld auf ihn ausübt
- Definition:
 - Ein Potentialfeld U ist eine Skalarfunktion über dem Freiraum

$$U:C_{free} \to \mathbb{R}$$

lacktriangle Die Kraft in einem Punkt $m{q}$ des Potentialfeldes ist der negative Gradient in diesem Punkt

$$F(\boldsymbol{q}) = -\nabla U(\boldsymbol{q})$$

Potentialfelder II

Abstoßendes Potenzial

- Hindernisse erzeugen ein abstoßendes Potential
- In großem Abstand zu Hindernissen $(> \rho_0)$ soll der Roboter nicht beeinflusst werden
- Beispiel:

$$U_{ab}(\boldsymbol{q}) = \begin{cases} \frac{1}{2} \nu \left(\frac{1}{\rho(\boldsymbol{q}, \boldsymbol{q}_{obs})} - \frac{1}{\rho_0} \right)^2 & \text{für } \rho(\boldsymbol{q}, \boldsymbol{q}_{obs}) \le \rho_0 \\ 0 & \text{sonst} \end{cases}$$

 $ho(\mathbf{q}, \mathbf{q}_{obs}) = \|\mathbf{q} - \mathbf{q}_{obs}\|$ ist die minimale Distanz zwischen Roboter und Hindernis

$$F_{ab} = -\nabla U_{ab} = \nu \left(\frac{1}{\rho(\boldsymbol{q}, \boldsymbol{q}_{obs})} - \frac{1}{\rho_0} \right) \cdot \frac{1}{\rho(\boldsymbol{q}, \boldsymbol{q}_{obs})^2} \cdot \frac{\boldsymbol{q} - \boldsymbol{q}_{obs}}{\rho(\boldsymbol{q}, \boldsymbol{q}_{obs})}$$

Potentialfelder III

- Anziehendes Potential
 - lacktriangle Es soll möglichst nur ein Minimum in $oldsymbol{q}_{ziel}$ geben
- Lineare Funktion der Distanz zum Ziel:

$$U_{ab}(\boldsymbol{q}) = \xi \|\boldsymbol{q} - \boldsymbol{q}_{ziel}\|$$

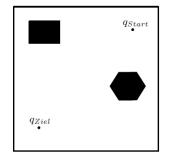
$$F_{ab}(q) = -\nabla U_{ab}(q) = -\xi \frac{q - q_{ziel}}{\|q - q_{ziel}\|}$$

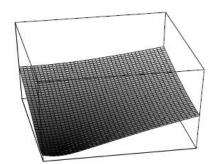
Für kleine Distanzen wird die Kraft sehr groß

Potentialfelder IV

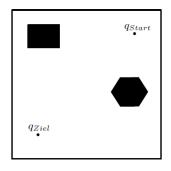
Quadratische Funktion der Distanz

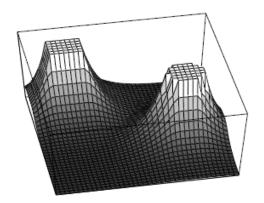
$$U_{an}(\boldsymbol{q}) = \xi \cdot \frac{1}{2} \|\boldsymbol{q} - \boldsymbol{q}_{ziel}\|^2$$


$$F_{an}(\mathbf{q}) = -\nabla U_{an}(\mathbf{q}) = -\xi(\mathbf{q} - \mathbf{q}_{ziel})$$

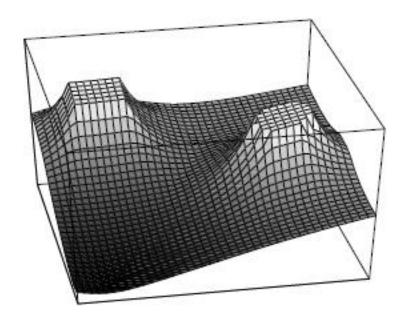

- Oft wird die Kombination aus linearer und quadratischer Funktion verwendet
 - Lineare Funktion, wenn weit vom Ziel entfernt
 - Quadratisch Funktion, wenn nah am Ziel

Potentialfelder: Beispiel I




lacktriangle Die **Zielstellung** $oldsymbol{q}_{ziel}$ hat das anziehende Potential U_{an}

lacktriangle Der **Hindernisraum** C_{obs} hat das abstoßende Potential U_{ab}



Potentialfelder: Beispiel II

- Die Summe der einwirkenden Kräfte bestimmt die Richtung der Bewegung.
- Für das Potentialfeld gilt: $U(q) = U_{an}(q) + U_{ab}(q)$
- Für das Kräftefeld gilt: $F(q) = F_{an}(q) + F_{ab}(q)$

Potentialfelder: Lokale Minima

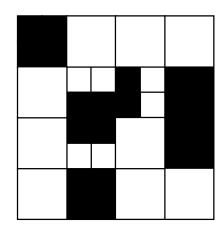
Lokale Minima

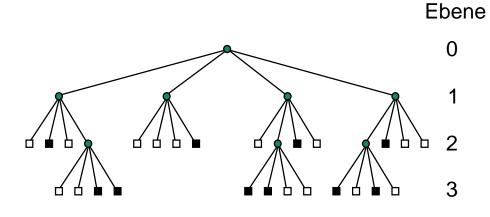
Durch Summation von U_{an} und U_{ab} kann U lokale Minima besitzen. Wenn der Roboter sich in Richtung des negativen Gradienten des Potentialfeldes bewegt, kann er in einem solchen lokalen Minimum "steckenbleiben".

Maßnahmen:

- lacksquare U_{an} und U_{ab} so definieren, dass U kein lokales Minimum hat, außer in $oldsymbol{q}_{ziel}$
- Im Suchalgorithmus Techniken zur "Flucht" aus lokalen Minima anwenden

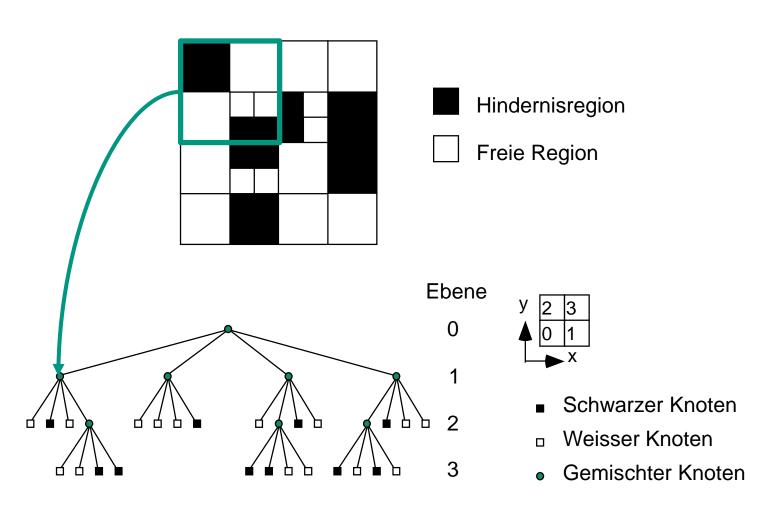
Baumsuche


- Anwendungsfall:
 - Mobiler Roboter
 - 2D-Arbeits- und Konfigurationsraum
- Darstellung des Konfigurationsraums als Quadtree
 - Rekursive Unterteilung des Konfigurationsraums in Kacheln
 - Kacheln sind entweder frei oder ein Hindernis
- Bewegungsplanung:
 - Kacheln finden, in denen sich Start- bzw. Zielkonfiguration befinden
 - Benachbarte freie Kacheln des Baums vom Start zum Ziel verbinden
 - Kollisionsfreie Routenplanung durch freie Kacheln


Baumsuche: Quadtree I

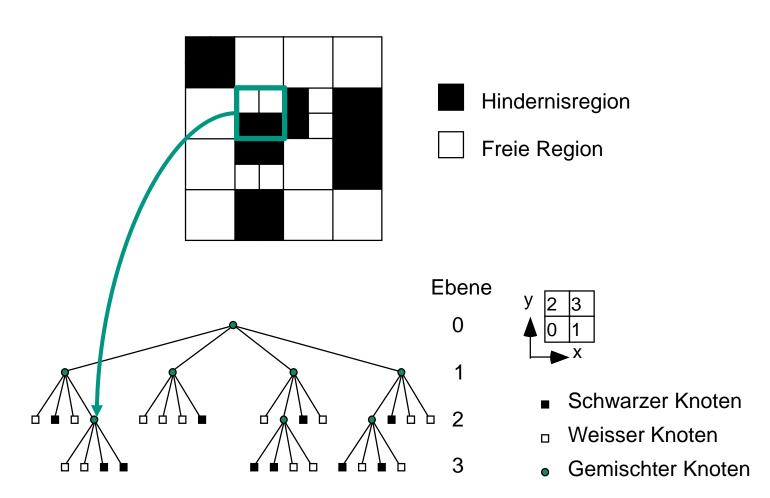
Darstellung des Konfigurationsraums als Quadtree

- Hindernisregion
- Freie Region


- Schwarzer Knoten
- Weisser Knoten
- Gemischter Knoten

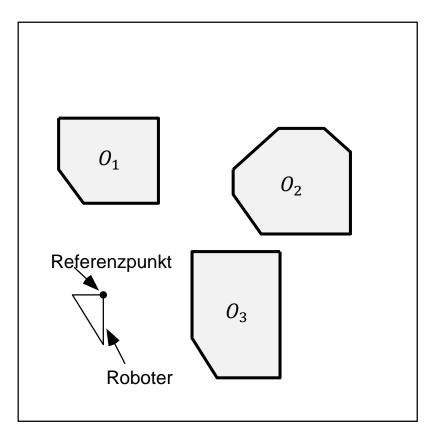
Baumsuche: Quadtree II

Beispiel: Ebene 1, Bereich 2

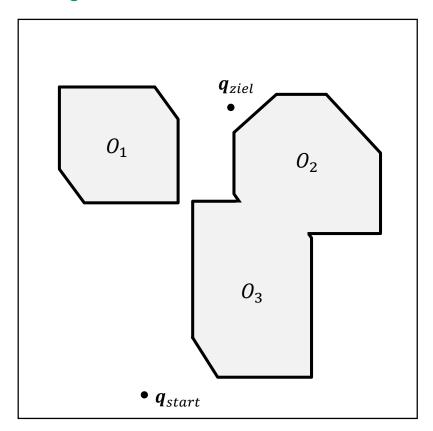


Baumsuche: Quadtree III

Beispiel Ebene 2, Bereich 1



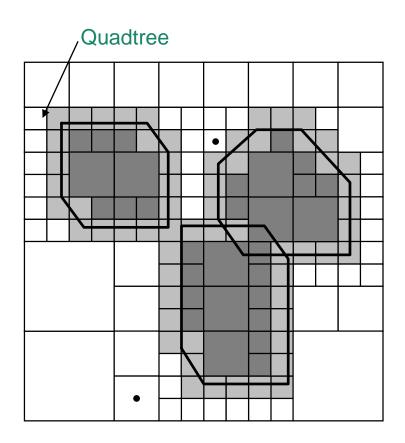
Baumsuche: Beispiel I



Arbeitsraum

Arbeitsraum eines Roboters mit Hindernissen

Konfigurationsraum



Konfigurationsraum für das vorliegende Robotersystem

Baumsuch: Beispiel II

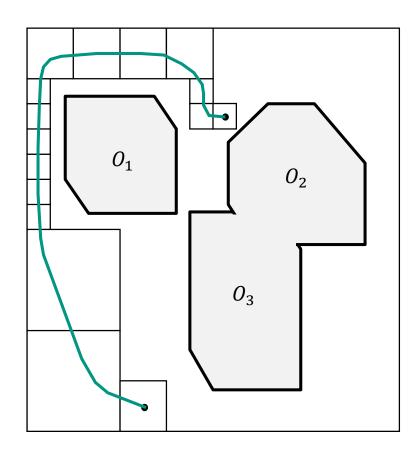
Freie Kachel

O₁

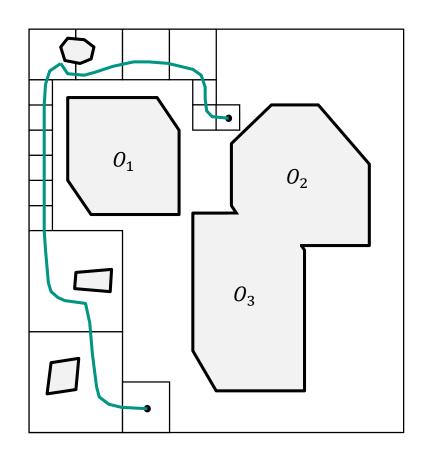
O₂

O₃

Zerlegung des Konfigurationsraums in Kachelzonen

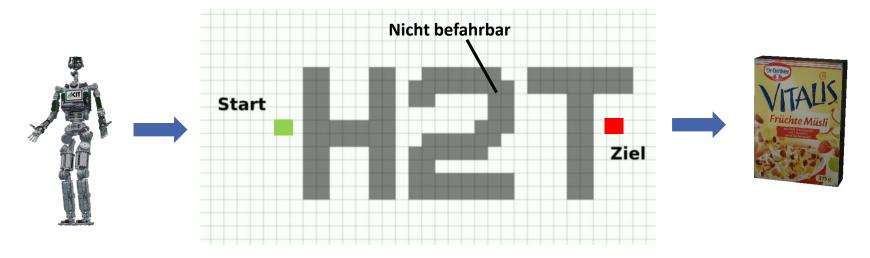

Gesucht: Folge von freien Kacheln vom Start- zum Zielpunkt

Start



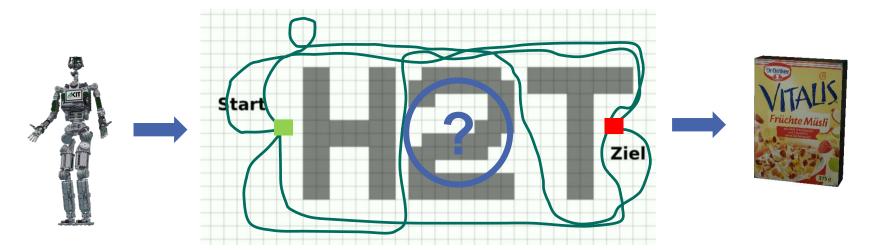
Baumsuche: Beispiel III

Hindernisfreie Verfahrroute


Ausweichmanöver um lokale Hindernisse

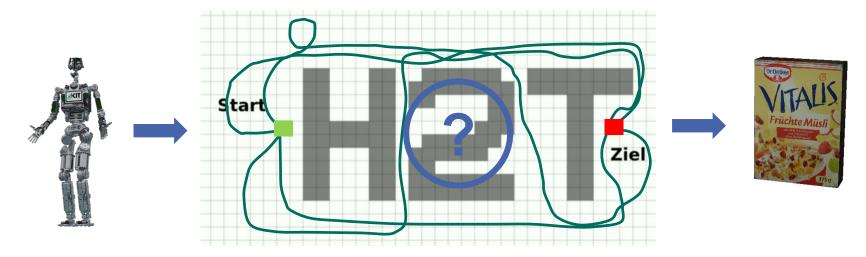
A*-Algorithmus

Motivation: Kürzester Pfad von Start nach Ziel



A*-Algorithmus

Motivation: Kürzester Pfad von Start nach Ziel

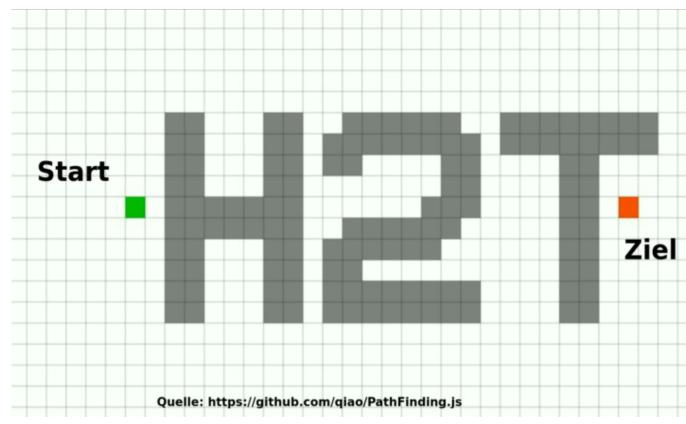


A*-Algorithmus

Motivation: Kürzester Pfad von Start nach Ziel

- A* ist einer der beliebtesten Algorithmen zur Routenplanung
- Kostenfunktion ist f(x) = g(x) + h(x)
 - g(x) entspricht Kosten von Start-Knoten nach Knoten x
 - \bullet h(x) entspricht **geschätzten** Kosten von Knoten x nach Ziel-Knoten

A*-Algorithmus: Funktionsweise


- Unterteile Knoten in
 - Open Set: Enthält zu Beginn alle Knoten außer dem Start-Knoten
 - Current Set: Enthält zu Beginn nur den Start-Knoten
 - Closed Set: Enthält bereits untersuchte Knoten, zu welchen der kürzeste Weg bekannt ist, zu Beginn leer.
- Nnoten aus dem Current Set mit geringstem f(x) wird als nächstes untersucht
- Wenn ein Knoten x abschließend untersucht wurde, dann werden die Nachfolgeknoten in das Open Set eingefügt und x in das Closed Set aufgenommen
- Algorithmus terminiert, wenn der Ziel-Knoten abschließend untersucht worden ist.
- Wenn Open Set leer ist, terminiert der Algorithmus ohne Lösung

A*-Algorithmus: Visualisierung

Englische Begriffe

Deutsch	Englisch
Bewegungsplanung	Motion planning
Freiraum	Free space
Hindernis	Obstacle
Konfiguration	Configuration
Konfigurationsraum	Configuration space
Pfadplanung	Path planning
Potentialfeld	Potential field
Sichtgraph	View graph
Trajektorie	Trajectory
Zellzerlegung	Cell decomposition
Zwangsbedingung	Constraint
Neben- und Randbedingung	Constraint

